login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361812
Expansion of 1/sqrt(1 - 4*x*(1+x)^3).
6
1, 2, 12, 62, 342, 1932, 11094, 64480, 378150, 2233304, 13263772, 79136844, 473969586, 2847911596, 17159547804, 103640073972, 627280131594, 3803643145596, 23102172930156, 140522319418164, 855880464524472, 5219168576004184, 31861229045809436
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(3*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 3*(2*n-2)*a(n-2) + 3*(2*n-3)*a(n-3) + (2*n-4)*a(n-4) ) for n > 3.
a(n) = binomial(2*n, n)*hypergeom([(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4], [1/3-n, 1/2-n, 2/3-n], -2^6/3^3). - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=Binomial[2*n, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 1/2-n, 2/3-n}, -2^6/3^3]; Array[a, 23, 0] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^3))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 25 2023
STATUS
approved