login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361796
Prime numbers preceded by two consecutive numbers which are products of four distinct primes (or tetraprimes).
1
8647, 15107, 20407, 20771, 21491, 23003, 23531, 24767, 24971, 27967, 29147, 33287, 34847, 36779, 42187, 42407, 42667, 43331, 43991, 46807, 46867, 51431, 52691, 52747, 53891, 54167, 58567, 63247, 63367, 69379, 71711, 73607, 73867, 74167, 76507, 76631, 76847, 80447, 83591, 84247, 86243
OFFSET
1,1
EXAMPLE
8647 (prime), 8646 = 2*3*11*131 and 8645 = 5*7*13*19.
15107 (prime), 15106 = 2*7*13*83 and 15105 = 3*5*19*53.
20407 (prime), 20406 = 2*3*19*179 and 20405 = 5*7*11*53.
MAPLE
N:= 10^5: # for terms <= N
TP:= NULL:
P:= select(isprime, [2, seq(i, i=3..N/30, 2)]):
for i from 1 to nops(P) do
for j from 1 to i-1 while P[i]*P[j] <= N/6 do
for k from 1 to j-1 while P[i]*P[j]*P[k] <= N/2 do
TP:= TP, op(select(`<=`, map(`*`, P[1..k-1], P[i]*P[j]*P[k]), N));
od od od:
TP:= {TP}:
TTP:= TP intersect map(`-`, TP, 1):
sort(convert(select(isprime, map(`+`, TTP, 2)), list)); # Robert Israel, Apr 28 2023
MATHEMATICA
q[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1, 1}; Select[Prime[Range[10^4]], AllTrue[# - {1, 2}, q] &] (* Amiram Eldar, Apr 26 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Massimo Kofler, Apr 26 2023
STATUS
approved