|
|
A031771
|
|
Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 93.
|
|
1
|
|
|
8651, 34600, 77847, 138392, 216235, 311376, 423815, 553552, 700587, 864920, 1046551, 1245480, 1461707, 1695232, 1946055, 2214176, 2499595, 2802312, 3122327, 3459640, 3814251, 4186160, 4575367, 4981872, 5405675, 5846776, 6305175, 6780872
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
(93*m)^2+2*m for m >= 1 is a proper subsequence. It is a subsequence (see comment in A031749) and the term 75620603 is not of this form. - Chai Wah Wu, Jun 19 2016
|
|
LINKS
|
|
|
MATHEMATICA
|
cf93Q[n_]:=Module[{s=Sqrt[n]}, If[IntegerQ[s], 1, Min[ContinuedFraction[s][[2]]]] == 93]; Select[Range[6781000], cf93Q] (* Harvey P. Dale, Aug 08 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|