login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers preceded by two consecutive numbers which are products of four distinct primes (or tetraprimes).
1

%I #46 Jun 19 2023 10:45:46

%S 8647,15107,20407,20771,21491,23003,23531,24767,24971,27967,29147,

%T 33287,34847,36779,42187,42407,42667,43331,43991,46807,46867,51431,

%U 52691,52747,53891,54167,58567,63247,63367,69379,71711,73607,73867,74167,76507,76631,76847,80447,83591,84247,86243

%N Prime numbers preceded by two consecutive numbers which are products of four distinct primes (or tetraprimes).

%e 8647 (prime), 8646 = 2*3*11*131 and 8645 = 5*7*13*19.

%e 15107 (prime), 15106 = 2*7*13*83 and 15105 = 3*5*19*53.

%e 20407 (prime), 20406 = 2*3*19*179 and 20405 = 5*7*11*53.

%p N:= 10^5: # for terms <= N

%p TP:= NULL:

%p P:= select(isprime, [2,seq(i,i=3..N/30,2)]):

%p for i from 1 to nops(P) do

%p for j from 1 to i-1 while P[i]*P[j] <= N/6 do

%p for k from 1 to j-1 while P[i]*P[j]*P[k] <= N/2 do

%p TP:= TP, op(select(`<=`,map(`*`,P[1..k-1],P[i]*P[j]*P[k]),N));

%p od od od:

%p TP:= {TP}:

%p TTP:= TP intersect map(`-`,TP,1):

%p sort(convert(select(isprime, map(`+`,TTP,2)),list)); # _Robert Israel_, Apr 28 2023

%t q[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1, 1}; Select[Prime[Range[10^4]], AllTrue[# - {1, 2}, q] &] (* _Amiram Eldar_, Apr 26 2023 *)

%Y Cf. A000040, A046386, A140078 and A362578.

%K nonn

%O 1,1

%A _Massimo Kofler_, Apr 26 2023