login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140078
Numbers k such that k and k+1 have 4 distinct prime factors.
19
7314, 8294, 8645, 9009, 10659, 11570, 11780, 11934, 13299, 13629, 13845, 14420, 15105, 15554, 16554, 16835, 17204, 17390, 17654, 17765, 18095, 18290, 18444, 18920, 19005, 19019, 19095, 19227, 20349, 20405, 20769, 21164, 21489, 21735
OFFSET
1,1
COMMENTS
Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Jun 02 2016
The subsequence of terms where k and k+1 are also squarefree is A318896. - R. J. Mathar, Jul 15 2023
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 161 (entry for 7314).
LINKS
D. A. Goldston, S. W. Graham, J. Pintz and C. Y. Yildirim, Small gaps between almost primes, the parity problem and some conjectures of Erdos on consecutive integers, arXiv:0803.2636 [math.NT], 2008.
FORMULA
{k: k in A033993 and k+1 in A033993}. - R. J. Mathar, Jul 19 2023
MATHEMATICA
a = {}; Do[If[Length[FactorInteger[n]] == 4 && Length[FactorInteger[n + 1]] == 4, AppendTo[a, n]], {n, 1, 100000}]; a (* Artur Jasinski, May 07 2008 *)
Transpose[Position[Partition[PrimeNu[Range[20000]], 2, 1], _?(#[[1]] == #[[2]] == 4&), {1}, Heads->False]][[1]] (* Harvey P. Dale, Jun 21 2013 *)
SequencePosition[PrimeNu[Range[22000]], {4, 4}][[;; , 1]] (* Harvey P. Dale, Jun 20 2024 *)
PROG
(PARI) isok(n) = (omega(n)==4) && (omega(n+1)==4); \\ Michel Marcus, Sep 04 2015
CROSSREFS
Similar sequences with k distinct prime factors: A074851 (k=2), A140077 (k=3), this sequence (k=4), A140079 (k=5).
Cf. A093548.
Equals A321504 \ A321494.
Sequence in context: A206080 A253939 A116248 * A321504 A318896 A328786
KEYWORD
nonn
AUTHOR
Artur Jasinski, May 07 2008
EXTENSIONS
Link provided by Harvey P. Dale, Jun 21 2013
STATUS
approved