login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k and k+1 have 4 distinct prime factors.
19

%I #37 Jun 20 2024 18:00:59

%S 7314,8294,8645,9009,10659,11570,11780,11934,13299,13629,13845,14420,

%T 15105,15554,16554,16835,17204,17390,17654,17765,18095,18290,18444,

%U 18920,19005,19019,19095,19227,20349,20405,20769,21164,21489,21735

%N Numbers k such that k and k+1 have 4 distinct prime factors.

%C Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - _Charles R Greathouse IV_, Jun 02 2016

%C The subsequence of terms where k and k+1 are also squarefree is A318896. - _R. J. Mathar_, Jul 15 2023

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 161 (entry for 7314).

%H Seiichi Manyama, <a href="/A140078/b140078.txt">Table of n, a(n) for n = 1..10000</a>

%H D. A. Goldston, S. W. Graham, J. Pintz and C. Y. Yildirim, <a href="http://arxiv.org/abs/0803.2636">Small gaps between almost primes, the parity problem and some conjectures of Erdos on consecutive integers</a>, arXiv:0803.2636 [math.NT], 2008.

%F {k: k in A033993 and k+1 in A033993}. - _R. J. Mathar_, Jul 19 2023

%t a = {}; Do[If[Length[FactorInteger[n]] == 4 && Length[FactorInteger[n + 1]] == 4, AppendTo[a, n]], {n, 1, 100000}]; a (* _Artur Jasinski_, May 07 2008 *)

%t Transpose[Position[Partition[PrimeNu[Range[20000]],2,1],_?(#[[1]] == #[[2]] == 4&),{1},Heads->False]][[1]] (* _Harvey P. Dale_, Jun 21 2013 *)

%t SequencePosition[PrimeNu[Range[22000]],{4,4}][[;;,1]] (* _Harvey P. Dale_, Jun 20 2024 *)

%o (PARI) isok(n) = (omega(n)==4) && (omega(n+1)==4); \\ _Michel Marcus_, Sep 04 2015

%Y Similar sequences with k distinct prime factors: A074851 (k=2), A140077 (k=3), this sequence (k=4), A140079 (k=5).

%Y Cf. A093548.

%Y Equals A321504 \ A321494.

%K nonn

%O 1,1

%A _Artur Jasinski_, May 07 2008

%E Link provided by _Harvey P. Dale_, Jun 21 2013