login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361752
a(n) = Sum_{k=0..floor(n/2)} binomial(2*(n-2*k),k) * binomial(2*(n-2*k),n-2*k).
2
1, 2, 6, 24, 94, 374, 1520, 6252, 25942, 108408, 455586, 1923444, 8151856, 34661252, 147788484, 631660788, 2705471254, 11609393084, 49899207640, 214792704256, 925811868178, 3995288307392, 17260287754284, 74641620619072, 323080683587056, 1399606566298916
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (1 + (x*y)^2) * (x + y)).
LINKS
FORMULA
G.f.: 1/sqrt(1 - 4*x*(1 + x^2)^2).
n*a(n) = 2*(2*n-1)*a(n-1) + 4*(2*n-3)*a(n-3) + 2*(2*n-5)*a(n-5) for n > 4.
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(2*(n-2*k), k)*binomial(2*(n-2*k), n-2*k));
(Python)
from math import comb
def A361752(n): return sum(comb(m:=(r:=n-(k<<1))<<1, k)*comb(m, r) for k in range((n>>1)+1)) # Chai Wah Wu, Mar 23 2023
CROSSREFS
Cf. A360266.
Sequence in context: A367274 A375276 A374598 * A376810 A115220 A293185
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 23 2023
STATUS
approved