login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361750
Terms of A329150 that have several preimages.
1
23, 223, 230, 232, 233, 235, 237, 323, 523, 723, 1123, 1323, 1723, 1923, 2023, 2223, 2230, 2232, 2233, 2235, 2237, 2300, 2302, 2303, 2305, 2307, 2311, 2313, 2317, 2319, 2320, 2322, 2323, 2325, 2327, 2330, 2332, 2333, 2335, 2337, 2350, 2352, 2353, 2355, 2357, 2370, 2372, 2373, 2375, 2377
OFFSET
1,1
COMMENTS
From k = 1 to 9, A329147(k) has more than one preimage only for k = 9 since A329147(9) = A329147(12) = 23; so, all terms of this sequence have in their decimal expansion the two-digit integer '23'; it follows that when || denotes concatenation, the terms of this sequence are of the form:
X||23 as 223, 323, 523, 723, 1123, 1323, 1723, 1923, 2023, 2223, ... or,
23||Y as 230, 232, 233, 235, 237, 2300, 2302, 2303, 2305, 2307, 2311, ... or,
X||23||Y as 2230, 2232, 2233, 2235, 2237, 3230, 3232, 3233, ...
Every term of this sequence has 2^q preimages, and the smallest terms with exactly 2^q preimages for q >= 1 are 23, 2323, 232323, ... with q times the 2-digit number 23 in its decimal expansion; hence, the 8 preimages of 232323 are 999, 9912, 9129, 91212, 1299, 12912, 12129 and 121212.
EXAMPLE
One example for each type:
23||2 = 232 = A329147(91) = A329147(121).
7||23 = 723 = A329147(49) = A329147(412).
2||23||5 = 2235 = A329147(193) = A329147(1123).
23||23 = 2323 = A329147(99) = A329147(129) = A329147(1212) = A329147(912).
MATHEMATICA
p[n_] := If[n > 0, Prime[n], 0]; seq[ndigmax_] := Module[{t = Table[FromDigits[ Flatten @ IntegerDigits @ (p /@ IntegerDigits[n]) ], {n, 1, 10^ndigmax - 1}]}, Sort @ Select[Tally[t], First[#] < 10^ndigmax && Last[#] > 1 &][[;; , 1]]]; seq[4] (* Amiram Eldar, Mar 23 2023 *)
PROG
(PARI) f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
lista(nn) = {my(map = Map()); for (n=1, nn, my(m = f(n)); if (mapisdefined(map, m), mapput(map, m, 1+mapget(map, m)), mapput(map, m, 0)); ); my(list = List()); for (n=1, nn, if (mapisdefined(map, n), my(v = mapget(map, n)); if (#v > 0, listput(list, n)); ); ); Vec(list); } \\ Michel Marcus, Mar 24 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Mar 23 2023
STATUS
approved