login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361373
Number of prime powers p^m <= n such that p | n.
4
0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 4, 3, 4, 1, 6, 1, 5, 3, 5, 1, 6, 2, 5, 3, 5, 1, 9, 1, 5, 4, 6, 3, 8, 1, 6, 4, 7, 1, 9, 1, 6, 5, 6, 1, 8, 2, 7, 4, 6, 1, 8, 3, 7, 4, 6, 1, 10, 1, 6, 5, 6, 3, 10, 1, 7, 4, 10, 1, 9, 1, 7, 5, 7, 3, 10, 1, 8, 4, 7, 1, 12, 3, 7
OFFSET
1,4
COMMENTS
Let p be prime. The term "prime power" p^m, m > 0, used here is that of A246655 = A000040 U A246547, the union of primes and perfect prime powers. Essentially, 1 is not considered a prime power.
LINKS
Michael De Vlieger, Diagram illustrating a(1440) = 20. Terms are arranged according to prime decomposition and sorted vertically. This sequence counts primes (red) and perfect prime powers (gold).
FORMULA
a(n) = Sum_{p | n} floor(log n / log p).
a(n) = number of prime powers in row n of A162306.
a(n) < A000005(n), since A000005 counts 1.
a(n) < A010846(n), since A010846 counts 1.
Let tau = A000005, rad = A007947, rcf = A010846, and lpf = A020639.
a(p) = tau(p) - 1 = rcf(p) - 1 = 1 since S = row p of both A027750 and A162306 = {1, p} contains the prime power p.
a(p^m) = tau(p^m) - 1 = rcf(p^m) = 1 = m since S = row p^m of both A027750 and A162306 = {1, p, p^2, ..., p^m} contains the prime powers {p, p^2, ..., p^m}.
a(k) = tau(k) - 1 = 3 for squarefree composite k = p*q, p < q < p^2 in A138109 since S = row k of A162306 = {1, p, q, p^2, p*q} contains 3 prime powers {p, q, p^2}.
a(k) < tau(k) for k in A138511 and k in A126706 since m = lpf(k)^(-1 + floor(log k / log lpf(k))) is such that m < k but m does not divide k.
EXAMPLE
Let S = {k <= n : rad(k) | n} = row n of A162306
a(1) = 0 since S = {1} has 0 prime powers.
a(2) = 1 since S = {1, [2]} has 1 prime power.
a(4) = 2 since S = {1, [2, 4]} has 2 prime powers.
a(6) = 3 since S = {1, [2, 3, 4], 6} has 3 prime powers.
a(10) = 4 since S = {1, [2, 4, 5, 8], 10} has 4 prime powers.
a(12) = 5 since S = {1, [2, 3, 4], 6, [8, 9], 12} has 5 prime powers, etc.
MAPLE
a := n -> add(ilog[p](n), p in NumberTheory:-PrimeFactors(n)):
seq(a(n), n = 1..92); # Peter Luschny, Jun 20 2024
MATHEMATICA
{0}~Join~Table[Total@ Map[Floor@ Log[#, n] &, FactorInteger[n][[All, 1]]], {n, 2, 120}]
PROG
(PARI) a(n) = if (n==1, 0, my(f=factor(n)[, 1]); sum(k=1, #f, logint(n, f[k]))); \\ Michel Marcus, Jun 20 2024
(Python)
from sympy import integer_log, primefactors
def A361373(n): return sum(integer_log(n, p)[0] for p in primefactors(n)) # Chai Wah Wu, Sep 20 2024
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Jun 17 2024
STATUS
approved