OFFSET
1,4
COMMENTS
T(n,k) = smallest m such that A038566(n,k) * m = 1 (mod n).
For n>1 every row begins with 1 and ends with n-1. T(n,k) = A038566(n,k)^(phi(n) - 1) (mod n). - Geoffrey Critzer, Jan 03 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..10060
Eric Weisstein's World of Mathematics, Modular Inverse
FORMULA
EXAMPLE
The table T(n,k) starts:
n\k 1 2 2 3 4 5 6 7 8 9 10 11
1: 0
2: 1
3: 1 2
4: 1 3
5: 1 3 2 4
6: 1 5
7: 1 4 5 2 3 6
8: 1 3 5 7
9: 1 5 7 2 4 8
10: 1 7 3 9
11: 1 6 4 3 9 2 8 7 5 10
12: 1 5 7 11
13: 1 7 9 10 8 11 2 5 3 4 6 12
14: 1 5 3 11 9 13
15: 1 8 4 13 2 11 7 14
16: 1 11 13 7 9 3 5 15
...
n = 17: 1 9 6 13 7 3 5 15 2 12 14 10 4 11 8 16,
n = 18: 1 11 13 5 7 17,
n = 19: 1 10 13 5 4 16 11 12 17 2 7 8 3 15 14 6 9 18,
n = 20: 1 7 3 9 11 17 13 19.
... reformatted (extended and corrected), - Wolfdieter Lang, Oct 06 2016
MAPLE
0, seq(seq(i^(-1) mod m, i = select(t->igcd(t, m)=1, [$1..m-1])), m=1..100); # Robert Israel, May 18 2014
MATHEMATICA
Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &];
PowerMod[a, -1, nn], {n, 1, 20}] // Grid (* Geoffrey Critzer, Jan 03 2015 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Franklin T. Adams-Watters, Oct 20 2006
STATUS
approved