login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124224
Table T(n,k) = reciprocal of k-th number prime to n, modulo n, for 1 <= k <= phi(n).
2
0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 4, 5, 2, 3, 6, 1, 3, 5, 7, 1, 5, 7, 2, 4, 8, 1, 7, 3, 9, 1, 6, 4, 3, 9, 2, 8, 7, 5, 10, 1, 5, 7, 11, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 1, 5, 3, 11, 9, 13, 1, 8, 4, 13, 2, 11, 7, 14, 1, 11, 13, 7, 9, 3, 5, 15, 1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16
OFFSET
1,4
COMMENTS
T(n,k) = smallest m such that A038566(n,k) * m = 1 (mod n).
For n>1 every row begins with 1 and ends with n-1. T(n,k) = A038566(n,k)^(phi(n) - 1) (mod n). - Geoffrey Critzer, Jan 03 2015
LINKS
Eric Weisstein's World of Mathematics, Modular Inverse
FORMULA
T(n,k) * A038566(n,k) = 1 (mod n), for n >=1 and k=1..A000010(n). - Wolfdieter Lang, Oct 06 2016
EXAMPLE
The table T(n,k) starts:
n\k 1 2 2 3 4 5 6 7 8 9 10 11
1: 0
2: 1
3: 1 2
4: 1 3
5: 1 3 2 4
6: 1 5
7: 1 4 5 2 3 6
8: 1 3 5 7
9: 1 5 7 2 4 8
10: 1 7 3 9
11: 1 6 4 3 9 2 8 7 5 10
12: 1 5 7 11
13: 1 7 9 10 8 11 2 5 3 4 6 12
14: 1 5 3 11 9 13
15: 1 8 4 13 2 11 7 14
16: 1 11 13 7 9 3 5 15
...
n = 17: 1 9 6 13 7 3 5 15 2 12 14 10 4 11 8 16,
n = 18: 1 11 13 5 7 17,
n = 19: 1 10 13 5 4 16 11 12 17 2 7 8 3 15 14 6 9 18,
n = 20: 1 7 3 9 11 17 13 19.
... reformatted (extended and corrected), - Wolfdieter Lang, Oct 06 2016
MAPLE
0, seq(seq(i^(-1) mod m, i = select(t->igcd(t, m)=1, [$1..m-1])), m=1..100); # Robert Israel, May 18 2014
MATHEMATICA
Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &];
PowerMod[a, -1, nn], {n, 1, 20}] // Grid (* Geoffrey Critzer, Jan 03 2015 *)
CROSSREFS
Cf. A124223, A102057, A038566, A000010 (row lengths), A023896 (row sums after first)
Sequence in context: A308686 A020650 A361373 * A290089 A323902 A331991
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved