login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table T(n,k) = reciprocal of k-th number prime to n, modulo n, for 1 <= k <= phi(n).
2

%I #22 Oct 19 2016 07:55:57

%S 0,1,1,2,1,3,1,3,2,4,1,5,1,4,5,2,3,6,1,3,5,7,1,5,7,2,4,8,1,7,3,9,1,6,

%T 4,3,9,2,8,7,5,10,1,5,7,11,1,7,9,10,8,11,2,5,3,4,6,12,1,5,3,11,9,13,1,

%U 8,4,13,2,11,7,14,1,11,13,7,9,3,5,15,1,9,6,13,7,3,5,15,2,12,14,10,4,11,8,16

%N Table T(n,k) = reciprocal of k-th number prime to n, modulo n, for 1 <= k <= phi(n).

%C T(n,k) = smallest m such that A038566(n,k) * m = 1 (mod n).

%C For n>1 every row begins with 1 and ends with n-1. T(n,k) = A038566(n,k)^(phi(n) - 1) (mod n). - _Geoffrey Critzer_, Jan 03 2015

%H Robert Israel, <a href="/A124224/b124224.txt">Table of n, a(n) for n = 1..10060</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ModularInverse.html">Modular Inverse</a>

%F T(n,k) * A038566(n,k) = 1 (mod n), for n >=1 and k=1..A000010(n). - _Wolfdieter Lang_, Oct 06 2016

%e The table T(n,k) starts:

%e n\k 1 2 2 3 4 5 6 7 8 9 10 11

%e 1: 0

%e 2: 1

%e 3: 1 2

%e 4: 1 3

%e 5: 1 3 2 4

%e 6: 1 5

%e 7: 1 4 5 2 3 6

%e 8: 1 3 5 7

%e 9: 1 5 7 2 4 8

%e 10: 1 7 3 9

%e 11: 1 6 4 3 9 2 8 7 5 10

%e 12: 1 5 7 11

%e 13: 1 7 9 10 8 11 2 5 3 4 6 12

%e 14: 1 5 3 11 9 13

%e 15: 1 8 4 13 2 11 7 14

%e 16: 1 11 13 7 9 3 5 15

%e ...

%e n = 17: 1 9 6 13 7 3 5 15 2 12 14 10 4 11 8 16,

%e n = 18: 1 11 13 5 7 17,

%e n = 19: 1 10 13 5 4 16 11 12 17 2 7 8 3 15 14 6 9 18,

%e n = 20: 1 7 3 9 11 17 13 19.

%e ... reformatted (extended and corrected), - _Wolfdieter Lang_, Oct 06 2016

%p 0,seq(seq(i^(-1) mod m, i = select(t->igcd(t,m)=1, [$1..m-1])),m=1..100); # _Robert Israel_, May 18 2014

%t Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &];

%t PowerMod[a, -1, nn], {n, 1, 20}] // Grid (* _Geoffrey Critzer_, Jan 03 2015 *)

%Y Cf. A124223, A102057, A038566, A000010 (row lengths), A023896 (row sums after first)

%K nonn,tabf

%O 1,4

%A _Franklin T. Adams-Watters_, Oct 20 2006