login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360944
Numbers m such that phi(m) is a triangular number, where phi is the Euler totient function (A000010).
2
1, 2, 7, 9, 11, 14, 18, 22, 29, 37, 57, 58, 63, 67, 74, 76, 79, 108, 114, 126, 134, 137, 143, 155, 158, 175, 183, 191, 211, 225, 231, 244, 248, 274, 277, 286, 308, 310, 329, 341, 350, 366, 372, 379, 382, 396, 417, 422, 423, 450, 453, 462, 554, 556, 604, 623, 631, 658, 682
OFFSET
1,2
COMMENTS
Subsequence of primes is A055469 because in this case phi(k(k+1)/2+1) = k(k+1)/2.
Subsequence of triangular numbers is A287472.
LINKS
EXAMPLE
phi(57) = 36 = 8*9/2, a triangular number; so 57 is a term of the sequence.
MAPLE
filter := m -> issqr(1 + 8*numtheory:-phi(m)) : select(filter, [$(1 .. 700)]);
MATHEMATICA
Select[Range[700], IntegerQ[Sqrt[8 * EulerPhi[#] + 1]] &] (* Amiram Eldar, Feb 27 2023 *)
PROG
(PARI) isok(m) = ispolygonal(eulerphi(m), 3); \\ Michel Marcus, Feb 27 2023
(Python)
from itertools import islice, count
from sympy.ntheory.primetest import is_square
from sympy import totient
def A360944_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:is_square((totient(n)<<3)+1), count(max(1, startvalue)))
A360944_list = list(islice(A360944_gen(), 20)) # Chai Wah Wu, Feb 28 2023
CROSSREFS
Similar, but with phi(m) is: A039770 (square), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A236386 (oblong).
Sequence in context: A191263 A287359 A022424 * A136498 A297826 A288598
KEYWORD
nonn
AUTHOR
Bernard Schott, Feb 26 2023
STATUS
approved