login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360861
a(n) = Sum_{k=0..n} binomial(n, ceiling(k/2)) * binomial(n, floor(k/2)).
2
1, 2, 7, 22, 81, 281, 1058, 3830, 14605, 54127, 208110, 782761, 3027038, 11501478, 44668692, 170974710, 666220005, 2564271875, 10018268150, 38728479647, 151631858378, 588229029258, 2307174835212, 8975958379817, 35258881445606, 137501193282026, 540821096592028
OFFSET
0,2
FORMULA
a(n) = (1/2)*(binomial(2*n+1,n)+binomial(n,floor(n/2))^2). - Tani Akinari, Jul 12 2023
MATHEMATICA
A360861[n_]:=(Binomial[2n+1, n]+Binomial[n, Floor[n/2]]^2)/2;
Array[A360861, 30, 0] (* Paolo Xausa, Dec 11 2023 *)
PROG
(Python)
from math import comb
def A360861(n): return sum(comb(n, m:=k>>1)**2*(n-m)//(m+1) for k in range(1, n+1, 2)) + sum(comb(n, k>>1)**2 for k in range(0, n+1, 2)) # Chai Wah Wu, Feb 28 2023
(Maxima) a(n):=(1/2)*(binomial(2*n+1, n)+(binomial(n, floor(n/2)))^2); /* Tani Akinari, Jul 12 2023 */
CROSSREFS
Row sums of A360859.
Sequence in context: A047095 A110137 A097967 * A052879 A007867 A241156
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 28 2023
STATUS
approved