login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A052879
Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammer specification.
2
1, 1, 2, 7, 22, 81, 303, 1178, 4675, 18951, 77925, 324642, 1366718, 5806575, 24861979, 107178994, 464805955, 2026418389, 8876266930, 39045009419, 172406753611, 763909798818, 3395430555790, 15135466679592, 67646059160525, 303071133963399, 1360886676130531
OFFSET
0,3
LINKS
FORMULA
G.f.: g(x)/(x*(1 + g(x))) where g(x) is the g.f. of A052836. - Andrew Howroyd, Aug 09 2020
a(n) ~ c * d^n / n^(3/2), where d = 4.75339125839792507... and c = 0.47320316916893... - Vaclav Kotesovec, Jul 08 2021
MAPLE
spec := [S, {B=Sequence(C, 1 <= card), C=Prod(Z, S), S= PowerSet(B)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=1, n, v=concat([1], WeighT(Vec(1/(1-x*Ser(v))-1)))); v} \\ Andrew Howroyd, Aug 09 2020
CROSSREFS
Cf. A052836.
Sequence in context: A110137 A097967 A360861 * A007867 A241156 A014558
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 09 2020
STATUS
approved