login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360710
Multiplicative with a(p^k) = 1 or -1 so as to minimize abs(Sum_{m = 1..p^k} a(m)); in case of a tie, a(p^k) = a(p^k-1).
1
1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1
OFFSET
1
COMMENTS
The partial sums (A360711) show oscillations of increasing magnitude.
EXAMPLE
For n = 1, a(1) = 1 (as this sequence is multiplicative).
For n = 2, abs(1 + 1) > abs(1 - 1), so a(2) = -1.
For n = 3, abs(1 - 1 + 1) = abs(1 - 1 - 1), so a(3) = a(3-1) = -1.
PROG
(PARI) { my (s=0, f); for (n=1, #a=vector(75), f=factor(n); print1 (a[n]=if (#f~==1, if (s, -sign(s), a[n-1]), prod(k=1, #f~, a[f[k, 1]^f[k, 2]]))", "); s+=a[n]) }
CROSSREFS
Cf. A360711 (partial sums).
Sequence in context: A337004 A343785 A359738 * A269529 A325931 A156734
KEYWORD
sign,mult
AUTHOR
Rémy Sigrist, Feb 17 2023
STATUS
approved