login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325931
Signs of first differences of A076042.
1
1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1
OFFSET
1
COMMENTS
The sequence of first differences of A076042 is this sequence times n^2. After the first five entries, the sequence consists mostly of alternating 1 and -1, with an increasingly rare extra 1.
FORMULA
A076042(n) = A076042(n-1) + a(n)*(n^2).
EXAMPLE
A076042(10) - A076072(9) = 7 - 107 = -100 = (-1)*(11^2), so a(10) = -1.
MAPLE
b:= proc(n) option remember; `if`(n=0, 0, (t->
t+`if`(t<n^2, 1, -1)*n^2)(b(n-1)))
end:
a:= n-> signum(b(n)-b(n-1)):
seq(a(n), n=1..105); # Alois P. Heinz, Sep 08 2019
MATHEMATICA
b[n_] := b[n] = If[n==0, 0, b[n-1] + If[b[n-1] < n^2, n^2, -n^2]];
b /@ Range[0, 100] // Differences // Sign (* Jean-François Alcover, Nov 26 2020 *)
CROSSREFS
Cf. A076042.
Sequence in context: A359738 A360710 A269529 * A156734 A119664 A257075
KEYWORD
easy,sign
AUTHOR
Allan C. Wechsler, Sep 08 2019
STATUS
approved