login
A269529
An analog of the Golay-Rudin-Shapiro sequence (A020985) in base -2 (see comments).
3
1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1
OFFSET
0
COMMENTS
The sequence is defined by the formula: a(n) = 1 if A269027(n) = A269528(n), otherwise a(n) = -1.
Since A269027, A269528 are analogs of Thue-Morse sequence (A010060) and A268411 in base -2 correspondingly, then, by author's comment in A020985, the sequence is an analog of Golay-Rudin-Shapiro sequence in base -2.
LINKS
Vladimir Shevelev, Two analogs of Thue-Morse sequence, arXiv:1603.04434 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Negabinary
CROSSREFS
KEYWORD
sign,base
AUTHOR
Vladimir Shevelev, Feb 29 2016
EXTENSIONS
More terms from Peter J. C. Moses, Feb 29 2016
STATUS
approved