login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360230
a(n) = coefficient of x^n/n! in Sum_{n>=0} (1 + n*x + x^2)^n * x^n/n!.
1
1, 1, 3, 19, 109, 921, 8911, 100003, 1307769, 18748369, 307713691, 5379610611, 106277271013, 2194176659689, 50689643777319, 1207518763542211, 31940171681228401, 862606920178886433, 25708097594461923379, 776354747057987797459, 25741373454075987900381
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined as follows.
(1) A(x) = Sum_{n>=0} (1 + n*x + x^2)^n * x^n/n!.
(2) A(x) = ( LambertW(-x^2)/(-x^2) )^(x + 1/x) / (1 + LambertW(-x^2)).
(3) A(x) = exp( -(x + 1/x) * LambertW(-x^2) ) / (1 + LambertW(-x^2)).
a(n) ~ (exp(exp(1/2) + exp(-1/2)) + (-1)^n*exp(- exp(1/2) - exp(-1/2))) * n^n / (sqrt(2) * exp(n/2)). - Vaclav Kotesovec, Mar 14 2023
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 109*x^4/4! + 921*x^5/5! + 8911*x^6/6! + 100003*x^7/7! + 1307769*x^8/8! + 18748369*x^9/9! + ...
such that
A(x) = 1 + (1 + x + x^2)*x + (1 + 2*x + x^2)^2*x^2/2! + (1 + 3*x + x^2)^3*x^3/3! + (1 + 4*x + x^2)^4*x^4/4! + (1 + 5*x + x^2)^5*x^5/5! + ... + (1 + n*x + x^2)^n * x^n/n! + ...
also
A(x) = W(x^2)^(x + 1/x) / (1 - x^2*W(x^2)), where W(x) = LambertW(-x)/(-x).
PROG
(PARI) {a(n) = n! * polcoeff( sum(m=0, n, (1 + m*x + x^2)^m * x^m/m! +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = n! * polcoeff( ( lambertw(-x^2 + O(x^(n+6)))/(-x^2) )^(x + 1/x) / (1 + lambertw(-x^2 + O(x^(n+6)))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A000169.
Sequence in context: A103005 A162354 A132959 * A253811 A037154 A037774
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2023
STATUS
approved