login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n/n! in Sum_{n>=0} (1 + n*x + x^2)^n * x^n/n!.
1

%I #10 Mar 14 2023 04:09:52

%S 1,1,3,19,109,921,8911,100003,1307769,18748369,307713691,5379610611,

%T 106277271013,2194176659689,50689643777319,1207518763542211,

%U 31940171681228401,862606920178886433,25708097594461923379,776354747057987797459,25741373454075987900381

%N a(n) = coefficient of x^n/n! in Sum_{n>=0} (1 + n*x + x^2)^n * x^n/n!.

%H Paul D. Hanna, <a href="/A360230/b360230.txt">Table of n, a(n) for n = 0..300</a>

%F E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined as follows.

%F (1) A(x) = Sum_{n>=0} (1 + n*x + x^2)^n * x^n/n!.

%F (2) A(x) = ( LambertW(-x^2)/(-x^2) )^(x + 1/x) / (1 + LambertW(-x^2)).

%F (3) A(x) = exp( -(x + 1/x) * LambertW(-x^2) ) / (1 + LambertW(-x^2)).

%F a(n) ~ (exp(exp(1/2) + exp(-1/2)) + (-1)^n*exp(- exp(1/2) - exp(-1/2))) * n^n / (sqrt(2) * exp(n/2)). - _Vaclav Kotesovec_, Mar 14 2023

%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 109*x^4/4! + 921*x^5/5! + 8911*x^6/6! + 100003*x^7/7! + 1307769*x^8/8! + 18748369*x^9/9! + ...

%e such that

%e A(x) = 1 + (1 + x + x^2)*x + (1 + 2*x + x^2)^2*x^2/2! + (1 + 3*x + x^2)^3*x^3/3! + (1 + 4*x + x^2)^4*x^4/4! + (1 + 5*x + x^2)^5*x^5/5! + ... + (1 + n*x + x^2)^n * x^n/n! + ...

%e also

%e A(x) = W(x^2)^(x + 1/x) / (1 - x^2*W(x^2)), where W(x) = LambertW(-x)/(-x).

%o (PARI) {a(n) = n! * polcoeff( sum(m=0,n, (1 + m*x + x^2)^m * x^m/m! +x*O(x^n)),n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n) = n! * polcoeff( ( lambertw(-x^2 + O(x^(n+6)))/(-x^2) )^(x + 1/x) / (1 + lambertw(-x^2 + O(x^(n+6)))),n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A000169.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 19 2023