OFFSET
0,2
COMMENTS
In general, for m>1, Sum_{k=0..n} binomial(n,k) * binomial(m*k,k) ~ sqrt((m + (1 - 1/m)^(m-1))/(m-1)) * (1 + m^m/(m-1)^(m-1))^n / sqrt(2*Pi*n).
LINKS
Robert Israel, Table of n, a(n) for n = 0..977
FORMULA
a(n) ~ 283^(n + 1/2) / (2^(7/2) * sqrt(Pi*n) * 3^(3*n + 1/2)).
Conjecture D-finite with recurrence +81*n*(3*n-1)*(3*n-2)*a(n) +3*(243*n^3-8433*n^2+14984*n-7064)*a(n-1) +2*(-58607*n^3+297306*n^2-491401*n+269124)*a(n-2) +6*(n-2)*(56663*n^2-237722*n+252221)*a(n-3) -3*(n-2)*(n-3)*(111625*n-286402)*a(n-4) +110653*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 09 2023
a(n) = 4F3( -n,1/4,1/2,3/4 ; 1/3, 2/3,1 ; -256/27). - R. J. Mathar, Jan 10 2023
MAPLE
A359643 := proc(n)
hypergeom([-n, 1/4, 1/2, 3/4], [1/3, 2/3, 1], -256/27) ;
simplify(%) ;
end proc:
seq(A359643(n), n=0..40) ; # R. J. Mathar, Jan 10 2023
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[4*k, k], {k, 0, n}], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k) * binomial(4*k, k)); \\ Michel Marcus, Jan 09 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 09 2023
STATUS
approved