login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359642
Number of numbers <= 10^n that are products of 4 distinct primes.
2
0, 0, 16, 429, 7039, 92966, 1103888, 12364826, 133702610, 1413227318, 14709861824, 151469044739, 1547593008310, 15721130285808, 159006397271949
OFFSET
1,3
EXAMPLE
a(3) = 16 = #{210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966}
PROG
(PARI) a(n) = my(N=10^n); (f(m, p, k, j=1)=my(s=sqrtnint(N\m, k), count=0); if(k==2, forprime(q=p, s, count += primepi(N\(m*q)) - j; j+=1); return(count)); forprime(q=p, s, count += f(m*q, q+1, k-1, j+1); j+=1); count); f(1, 2, 4); \\ Daniel Suteu, Jan 11 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Peter Dolland, Jan 09 2023
EXTENSIONS
a(14)-a(15) from Daniel Suteu, Jan 11 2023
STATUS
approved