login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322713
a(n) = numerator of the Riemann prime counting function for 10^n.
2
0, 16, 428, 445273, 56175529, 991892879, 18296822833013, 3559637526370229, 6427431691337929, 14804074778750628149, 9387415960571046321167, 594663752918349842404169, 200936708396848319452718531, 296345083061712053722716462103, 30189234512048649753828116713823
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
FORMULA
a(n) = A096624(10^n).
a(n) = numerator of Sum_{k=1..floor(log_2(10^n))} pi(floor(10^(n/k)))/k, where pi(x) is the prime counting function A000720.
EXAMPLE
0, 16/3, 428/15, 445273/2520, 56175529/45045, 991892879/102960, 18296822833013/232792560, ...
PROG
(PARI) a(n) = numerator(sum(k=1, logint(10^n, 2), primepi(sqrtnint(10^n, k))/k));
CROSSREFS
The corresponding denominators are A322714.
Sequence in context: A268076 A202546 A220286 * A359642 A275035 A275140
KEYWORD
frac,nonn
AUTHOR
Daniel Suteu, Dec 24 2018
STATUS
approved