login
A359176
a(n) = binomial(2*n-2,n-1) - n.
1
0, 0, 3, 16, 65, 246, 917, 3424, 12861, 48610, 184745, 705420, 2704143, 10400586, 40116585, 155117504, 601080373, 2333606202, 9075135281, 35345263780, 137846528799, 538257874418, 2104098963697, 8233430727576, 32247603683075, 126410606437726, 495918532948077
OFFSET
1,3
COMMENTS
a(n) is the number of ways to place n-1 indistinguishable balls into n distinguishable boxes with not all balls placed in one box.
LINKS
FORMULA
a(n) = A000984(n-1) - n.
G.f.: x*(1/sqrt(1 - 4*x) - 1/(1 - x)^2). - Stefano Spezia, Dec 28 2022
D-finite with recurrence: (-n+1)*a(n) +(5*n-8)*a(n-1) +2*(-2*n+5)*a(n-2) +6*(n-2)=0. - R. J. Mathar, Jan 25 2023
From Stefano Spezia, Apr 25 2023:
E.g.f.: x*exp(x)*(exp(x)*(BesselI(0,2*x) - BesselI(1,2*x)) - 1).
a(n) ~ 2^(2*n-2)/sqrt(n*Pi). (End)
MATHEMATICA
a[n_] := Binomial[2*n - 2, n - 1] - n; Array[a, 30] (* Amiram Eldar, Dec 30 2022 *)
CROSSREFS
Cf. A000984.
Sequence in context: A037451 A247363 A007143 * A062960 A293579 A044046
KEYWORD
nonn
AUTHOR
Enrique Navarrete, Dec 28 2022
STATUS
approved