login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A044046
Nonisomorphic catacondensed monoheptafusenes (see reference for precise definition).
2
0, 0, 1, 3, 16, 66, 300, 1314, 5884, 26304, 118633, 537255, 2447172, 11197710, 51473017, 237569535, 1100655430, 5117008440, 23865566651, 111636805905, 523632748312, 2462303017950, 11605730134178, 54821137926588, 259479816361256, 1230496691745816, 5845551200648015
OFFSET
0,4
LINKS
S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, Harary-Read numbers for catafusenes: Complete classification according to symmetry, Journal of mathematical chemistry 9.1 (1992): 19-31.
S. J. Cyvin, J. Brunvoll, Generating functions for the Harary-Read numbers classified according to symmetry, Journal of mathematical chemistry 9.1 (1992): 33-38.
B. N. Cyvin et al., A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337 (see Table 1).
S. J. Cyvin et al., Graph-theoretical studies on fluoranthenoids and fluorenoids:enumeration of some catacondensed systems, J. Molec. Struct. (Theochem), 285 (1993), 179-185.
F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
FORMULA
From Emeric Deutsch, Mar 14 2004: (Start)
G.f.: (U(z)^2 + U(z^2))/2, where U(z) = (1 - 3z - sqrt(1 - 6z + 5z^2))/(2z). [corrected by Michel Marcus, Apr 22 2019]
a(2n) = (1/2)*(A045445(2n) + A002212(n)), n >= 1; a(2n+1) = (1/2)*A045445(2n+1), n >= 0. (End)
PROG
(PARI) U(z)= (1-3*z-sqrt(1-6*z+5*z^2))/(2*z);
my(x='x + O('x^40)); concat([0, 0], Vec((U(z)^2 + U(z^2))/2)) \\ Michel Marcus, Apr 22 2019
CROSSREFS
Sequence in context: A359176 A062960 A293579 * A179600 A278089 A248016
KEYWORD
nonn
EXTENSIONS
More terms from Emeric Deutsch, Mar 14 2004
More terms from Michel Marcus, Apr 22 2019
STATUS
approved