login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248016 Sum over each antidiagonal of A248011. 6
0, 0, 3, 16, 67, 204, 546, 1268, 2714, 5348, 9965, 17580, 29781, 48520, 76660, 117624, 176196, 257976, 370503, 522456, 725175, 991540, 1337974, 1782924, 2349438, 3063164, 3955601, 5061524, 6423017, 8086224, 10106280, 12543280, 15468232, 18958128, 23103051, 28000224, 33762411, 40510812, 48384906, 57534052 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000
FORMULA
Empirically, a(n) = (2*n^7 + 14*n^6 + 14*n^5 + 70*n^4 - 77*n^3 - 399*n^2 + 61*n + 105 - 105*(-1)^n - 35*n^3*(-1)^n - 105*n^2*(-1)^n + 35*n*(-1)^n)/6720.
Empirical g.f.: -x^3*(x^2+1)*(x^4-6*x^2-4*x-3) / ((x-1)^8*(x+1)^4). - Colin Barker, Apr 06 2015
EXAMPLE
a(1..9) are formed as follows:
. Antidiagonals of A248011 n a(n)
. 0 1 0
. 0 0 2 0
. 1 1 1 3 3
. 2 6 6 2 4 16
. 6 14 27 14 6 5 67
. 10 32 60 60 32 10 6 204
. 19 55 129 140 129 55 19 7 546
. 28 94 218 294 294 218 94 28 8 1268
.44 140 363 506 608 506 363 140 44 9 2714
MAPLE
b := proc (n::integer, k::integer)::integer;
(4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)/96;
end proc;
for j to 10000 do
a := 0;
for k from j by -1 to 1 do
n := j-k+1;
a := a+b(n, k)
end do;
printf("%d, ", a)
end do;
CROSSREFS
Cf. A248011.
Sequence in context: A044046 A179600 A278089 * A000269 A015524 A012279
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms corrected and extended by Christopher Hunt Gribble, Apr 02 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 21:20 EST 2023. Contains 367540 sequences. (Running on oeis4.)