The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037451 a(n) = Fibonacci(n) * Fibonacci(2*n). 3
 0, 1, 3, 16, 63, 275, 1152, 4901, 20727, 87856, 372075, 1576279, 6676992, 28284569, 119814747, 507544400, 2149990983, 9107510539, 38580029568, 163427634589, 692290558575, 2932589884016, 12422650070163, 52623190204271, 222915410823168, 944284833600625, 4000054745057907, 16944503814103696, 71778070001033487 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let F(n) = Fibonacci(n), then abs(det([F(n), F(n+k); F(n+2k), F(n+3k)])) = a(k), independent of n. - R. M. Welukar, Aug 26 2014 From Joerg Arndt, Aug 26 2014: (Start) This is a special case of Johnson's identity (relation 32 in the Mathworld link). F(a)*F(b) - F(c)*F(d) = (-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)), where a+b = c+d and r arbitrary. Here a = n, b = n+3*k, c = n+k, d = n+2*k, and r = c, so that (-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)) = (-1)^c*(F(a-c)*F(b-c) - F(c-c)*F(d-c)) = (-1)^c*(F(a-c)*F(b-c) - 0) = (-1)^c*(F(-k)*F(-2*k)), taking the absolute value gives a(k). (End) Let L(n) = A000032(n), then abs(det([L(n), L(n+k); L(n+2k), L(n+3k)])) = 5*a(k), independent of n. - M. N. Deshpande and R. M. Welukar, Aug 30 2014 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Eric Weisstein, Fibonacci Number (MathWorld). Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1). FORMULA From Emanuele Munarini, Jul 18 2003: (Start) G.f.: ( x + x^3 )/( 1 - 3 x - 6 x^2 + 3 x^3 + x^4 ). a(n+4) = 3*a(n+3) + 6*a(n+2) - 3*a(n+1) - a(n). (End) G.f.: x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)). - Joerg Arndt, Aug 26 2014 a(n) = (1/5)*(Lucas(3*n) - (-1)^n*Lucas(n)) = (1/5)*(Lucas(3*n) - Lucas(-n)). In general, for r = s (mod 2) the sequence Lucas(r*n) - Lucas(s*n) is a divisibility sequence. Cf. A273622. - Peter Bala, May 27 2016 Lim_{n->infinity} a(n+1)/a(n) = 2 + sqrt(5) = A098317. - Ilya Gutkovskiy, Jun 01 2016 a(n) = (-(1/2*(-1-sqrt(5)))^n+(2-sqrt(5))^n-(1/2*(-1+sqrt(5)))^n+(2+sqrt(5))^n)/5. - Colin Barker, Jun 03 2016 MAPLE seq((fibonacci(2*n)*fibonacci(n)), n=0..25); # Zerinvary Lajos, Jun 24 2006 MATHEMATICA Table[Fibonacci[n]Fibonacci[2n], {n, 0, 40}] (* Harvey P. Dale, Mar 13 2011 *) PROG (MAGMA) [Fibonacci(n)*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011 (PARI) concat([0], Vec( x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)) + O(x^66) ) ) \\ Joerg Arndt, Aug 26 2014 CROSSREFS Cf. A000032, A000045, A098317, A273622. Sequence in context: A155160 A323941 A267036 * A247363 A007143 A062960 Adjacent sequences:  A037448 A037449 A037450 * A037452 A037453 A037454 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Feb 01 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 12:31 EDT 2021. Contains 346467 sequences. (Running on oeis4.)