login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358792
Numbers k such that for some r we have d(1) + ... + d(k - 1) = d(k + 1) + ... + d(k + r), where d(i) = A000005(i).
2
3, 10, 16, 23, 24, 27, 42, 43, 45, 46, 49, 57, 60, 62, 67, 82, 92, 113, 117, 119, 122, 146, 151, 152, 157, 158, 159, 182, 188, 192, 193, 197, 198, 222, 223, 226, 228, 235, 242, 268, 270, 272, 274, 286, 288, 320, 323, 328, 334, 337, 361, 372, 373, 378, 381, 386
OFFSET
1,1
COMMENTS
These numbers might be called "divisor sequence balancing numbers", after the Behera and Panda link.
Numbers k such that A006218(k-1) + A006218(k) is a term of A006218. - Robert Israel, Dec 01 2022
LINKS
A. Behera and G. K. Panda, On the square roots of triangular numbers, The Fibonacci Quarterly, 37.2 (1999), 98-105.
EXAMPLE
k = 3:
d(1) + d(2) = d(4) = 3.
Thus the balancing number k = 3 is a term. The balancer r is 1.
k = 10:
d(1) + ... + d(9) = d(11) + ... + d(16) = 23.
Thus the balancing number k = 10 is a term. The balancer r is 6.
d(i) = A000005(i).
MAPLE
Tau:= map(numtheory:-tau, [$1..1000]):
S:= ListTools:-PartialSums(Tau):
A:=select(t -> member(S[t-1]+S[t], S), [$2..1000]); # Robert Israel, Dec 01 2022
MATHEMATICA
With[{m = 720}, d = DivisorSigma[0, Range[m]]; s = Accumulate[d]; Select[Range[2, m], MemberQ[s, 2*s[[#]] - d[[#]]] &]] (* Amiram Eldar, Dec 01 2022 *)
PROG
(Python)
from sympy import divisor_count
from itertools import count, islice
def agen(): # generator of terms
d, s, sset, i = [0, 1, 2], [0, 1, 3], set(), 3
for k in count(2):
target = s[k-1] + s[k]
while s[-1] < target:
di = divisor_count(i); nexts = s[-1] + di; i += 1
d.append(di); s.append(nexts); sset.add(nexts)
if target in sset: yield k
print(list(islice(agen(), 56))) # Michael S. Branicky, Dec 04 2022
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Ctibor O. Zizka, Dec 01 2022
EXTENSIONS
More terms from Michael S. Branicky, Dec 01 2022
STATUS
approved