OFFSET
0,1
COMMENTS
Sum_{p prime} log(p)/p is divergent.
FORMULA
Limit_{N->oo} ((Sum_{p<=N prime == 3 (mod 4)} log(p)/p) - (Sum_{p<=N prime == 1 (mod 4)} log(p)/p)).
EXAMPLE
-0.54568127279512790148953238338...
MATHEMATICA
alfa[s_]:= 1/(1 + 1/2^s) * DirichletBeta[s] * Zeta[s] / Zeta[2*s]; beta[s_]:= (1 - 1/2^s) * Zeta[s] / DirichletBeta[s]; Do[Print[N[-1/2*Sum[MoebiusMu[2*n + 1]/(2*n + 1) * Limit[D[Log[alfa[(2*n + 1)*s]/beta[(2*n + 1)*s]], s], s -> 1], {n, 0, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jan 25 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 03 2023
STATUS
approved