login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A358793 Lexicographically earliest sequence of positive and unique integers such that 2*Sum_{k = 1..n} a(k) = Sum_{k = 1..n} a(a(k)) for n > 1 and a(1) = 1. 0
1, 3, 7, 5, 10, 8, 14, 16, 11, 20, 22, 13, 26, 28, 17, 32, 34, 19, 38, 40, 23, 44, 46, 25, 50, 52, 29, 56, 58, 31, 62, 64, 35, 68, 70, 37, 74, 76, 41, 80, 82, 43, 86, 88, 47, 92, 94, 49, 98, 100, 53, 104, 106, 55, 110, 112, 59, 116, 118, 61, 122, 124, 65, 128 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
There is a second version of this sequence possible if we change the definition to a(1) = 2 and a(n) > 1, then the sequence will start 2, 4, 5, 8, 10, 7, 14, ... . It will after this continue in the same way as our actual sequence does (and would also extend the valid range of the recurrence formulas).
Start a(1) = 2 and value 1 allowed is A257794.
LINKS
FORMULA
G.f.: x*(1 + 3*x + 7*x^2 + 4*x^3 + 7*x^4 + x^5 + 8*x^6 + 3*x^7 - 4*x^8 + 2*x^9 - x^10 + x^11 - 3*x^12 + x^14)/(1 - x^3 - x^6 + x^9).
a(n) = a(n-3) + a(n-6) - a(n-9) for n >= 16.
a((3*(2*n-1) - (-1)^n)/4) = (3*(2*n-1) - (-1)^n)/2, for n > 3.
a(6*n) = 6*n+1, for n > 1.
a(6*n+3) = 6*n+5, for n > 0.
a(n) = 30*n - 2*a(n-1) - 3*a(n-2) - 3*a(n-3) - 3*a(n-4) - 3*a(n-5) - 2*a(n-6) - a(n-7) - 96, for n > 13.
PROG
(PARI) a(n) = {my(v = [1, 3, 7, 5, 10, 8]); if(n < 7, v[n], n*(1+min(1, n%3))+(n%3 == 0)+(n%6 == 3))}
CROSSREFS
Sequence in context: A113910 A264983 A265341 * A094009 A328185 A349772
KEYWORD
nonn,easy
AUTHOR
Thomas Scheuerle, Dec 01 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 22:24 EDT 2024. Contains 374288 sequences. (Running on oeis4.)