login
A358771
a(n) = 1 if the arithmetic derivative of n is of the form 4k+1, otherwise 0.
7
0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0
OFFSET
0
FORMULA
a(n) = [A003415(n) == 1 (mod 4)], where [ ] is the Iverson bracket.
a(n) = A165560(n) - A358773(n).
a(n) >= A010051(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A358771(n) = (1==(A003415(n)%4));
CROSSREFS
Characteristic function of A358772.
Cf. also A353494, A353495, A358773 and A358751 [= a(A003961(n))].
Sequence in context: A286807 A126564 A180433 * A165560 A358220 A354874
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 01 2022
STATUS
approved