login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357914
Iterated partial sums of the Moebius mu function, square array read by ascending antidiagonals.
2
1, 1, -1, 1, 0, -1, 1, 1, -1, 0, 1, 2, 0, -1, -1, 1, 3, 2, -1, -2, 1, 1, 4, 5, 1, -3, -1, -1, 1, 5, 9, 6, -2, -4, -2, 0, 1, 6, 14, 15, 4, -6, -6, -2, 0, 1, 7, 20, 29, 19, -2, -12, -8, -2, 1, 1, 8, 27, 49, 48, 17, -14, -20, -10, -1, -1, 1, 9, 35, 76, 97, 65, 3, -34, -30, -11, -2, 0
OFFSET
1,12
FORMULA
T(1,k) = A008683(k) for k >= 1; T(n,k) = Sum_{i=1..k} T(n-1,i) for n > 1, k >= 1.
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 ...
---+-------------------------------------------------------
1 | 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, ... = A008683
2 | 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, ... = A002321
3 | 1, 1, 0, -1, -3, -4, -6, -8, -10, -11, ... = A091555
4 | 1, 2, 2, 1, -2, -6, -12, -20, -30, -41, ...
5 | 1, 3, 5, 6, 4, -2, -14, -34, -64, -105, ...
6 | 1, 4, 9, 15, 19, 17, 3, -31, -95, -200, ...
7 | 1, 5, 14, 29, 48, 65, 68, 37, -58, -258, ...
8 | 1, 6, 20, 49, 97, 162, 230, 267, 209, -49, ...
9 | 1, 7, 27, 76, 173, 335, 565, 832, 1041, 992, ...
10 | 1, 8, 35, 111, 284, 619, 1184, 2016, 3057, 4049, ...
...
MATHEMATICA
A357914list[dmax_]:=With[{a=Reverse[NestList[Accumulate[Most[#]]&, MoebiusMu[Range[dmax]], dmax-1]]}, Array[Diagonal[a, #]&, dmax, 1-dmax]];
A357914list[10] (* Generates 10 antidiagonals *)
CROSSREFS
Cf. A008683 (row 1), A002321 (row 2), A091555 (row 3), A000012 (column 1), A368429 (main diagonal).
Discarding terms above the main diagonal: A001477 (column 2), A000096 (column 3), A005286 (column 4).
Sequence in context: A175358 A235330 A029394 * A035467 A254045 A024996
KEYWORD
sign,tabl
AUTHOR
Paolo Xausa, Jan 18 2023
STATUS
approved