|
|
A357697
|
|
Odd cubefree abundant numbers.
|
|
2
|
|
|
1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11025, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 17325, 18585, 19215, 19635, 20475, 21105, 21945, 22365, 22995, 23205, 24255, 24885, 25935, 26145, 26565, 26775
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
First differs from A333950 at n = 1258. Terms that are not in A333950 include 8564325, 8565795, 8567325, ... and terms of A333950 that are not here include 1126125, 2096325, 2207205, ... .
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 16, 125, 1127, 11734, 116911, 1162781, 11638566, 116342286, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00116... .
|
|
LINKS
|
|
|
EXAMPLE
|
1575 = 3^2 * 5^2 * 7 is a term since it is odd and cubefree and sigma(1575) = 3224 > 2*1575.
|
|
MATHEMATICA
|
f[p_, e_] := (p^(e+1)-1)/(p-1); q[1] = 0; q[n_] := AllTrue[(fct = FactorInteger[n])[[;; , 2]], # < 3 &] && Times @@ f @@@ fct > 2*n; Select[Range[1, 30000, 2], q]
|
|
PROG
|
(PARI) is(n) = {my(f); if(n%2 == 0, return(0)); f = factor(n); (n==1 || vecmax(f[, 2]) < 3) && sigma(f, -1) > 2};
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|