OFFSET
5,1
LINKS
J. B. Kadane, Some equivalence classes in paired comparisons, The Annals of Mathematical Statistics, 37 (1966), 488-494.
FORMULA
Kadane proves that a(n) = n!*((1/5)*(n-4)+(14/3)*(n-5)+8*(n-6)I(n>5)+(7/9)*(n-6)*(n-7)I(n>5)+(10/3)*(n-7)*(n-8)I(n>6)+(5/18)*(n-8)*(n-9)*(n-10)I(n>7)+(1/162)*(n-9)*(n-10)*(n-11)*(n-12)I(n>8)+(1/29160)*(n-10)*(n-11)*(n-12)*(n-13)*(n-14)I(n>9)), where I(p) is the indicator function: 1 if p is true and 0 otherwise.
E.g.f.: (5*x^10-180*x^9+2205*x^8-12150*x^7+34155*x^6-51840*x^5+38313*x^4-3942*x^3-11502*x^2+4698*x+243)*x^5/(5*3^5*(1-x)^6).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ian R Harris, Ryan P. A. McShane, Sep 22 2022
STATUS
approved