login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356693
Decimal expansion of the constant B(2) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
0
0, 0, 0, 2, 4, 8, 3, 3, 4, 0, 5, 3, 7, 8, 9, 1, 4, 4, 1, 7, 5, 7, 2, 3, 8, 5, 6, 4, 4, 5, 2, 0, 8, 8, 1, 7, 7, 2, 6, 2, 0, 1, 4, 7, 6, 4, 7, 2, 5, 9, 8, 0, 2, 0, 3, 0, 7, 3, 3, 8, 1, 5, 4, 5, 2, 6, 0, 6, 7, 4, 9, 8, 3, 3, 2, 5, 1, 8, 3, 1, 4, 9, 0, 4, 6, 9, 7, 9, 2, 4, 0, 4, 8, 3, 7, 2, 0, 2, 3, 1, 7, 1, 9, 8, 2, 2, 2, 8, 7, 6, 5, 6, 9, 1, 7, 4, 5, 9
OFFSET
0,4
FORMULA
Equals (A332645^2 - A335815)/2.
EXAMPLE
0.000248334053789144...
MATHEMATICA
Join[{0, 0, 0}, RealDigits[N[-4*Catalan + Catalan^2/2 - Pi^2/2 + (Catalan*Pi^2)/8 + Pi^4/128 + (1/64)*Zeta[4, 1/4] + (2*Zeta'[1/2]^2)/Zeta[1/2]^2 - (Catalan Zeta'[1/2]^2)/(2 Zeta[1/2]^2) - (Pi^2 Zeta'[1/2]^2)/(16*Zeta[1/2]^2) - Zeta'[1/2]^4/(8*Zeta[1/2]^4) - (2 Zeta''[1/2])/Zeta[1/2] + (Catalan Zeta''[1/2])/(2 Zeta[1/2]) + (Pi^2 Zeta''[1/2])/(16*Zeta[1/2]) + Zeta'[1/2]^2*Zeta''[1/2]/(4 Zeta[1/2]^3) - Zeta'[1/2] Zeta'''[1/2]/(6 Zeta[1/2]^2) + Zeta''''[1/2]/(24 Zeta[1/2]), 115]][[1]]]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Aug 23 2022
STATUS
approved