login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356646
Numbers k such that the integer log of k! is a perfect power.
2
4, 8, 27, 31, 575, 669, 1201, 2505, 4784, 7618, 35710, 65005, 166422, 870062, 994086, 1105670, 1209538, 2140133, 3020610, 9147713, 9404277, 14492743, 16792162, 18566766, 19445469, 21264479, 46483343, 109424090, 292374429, 293351547, 362681674, 399576585, 450622855
OFFSET
1,1
COMMENTS
Numbers k such that A025281(k) is a perfect power.
Numbers k such that A356631(k) = 1.
LINKS
EXAMPLE
a(2) = 8 because the integer log of 8! = 2^7 * 3^2 * 5 * 7 is 2*7 + 3*2 + 5 + 7 = 32 = 2^5 is a perfect power.
MAPLE
spf:= proc(n) local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc:ispow:= proc(n) igcd(map(t -> t[2], ifactors(n)[2]))>1 end proc:s:= 0: R:= NULL: count:= 0:
for i from 1 while count < 27 do
s:= s+spf(i);
if ispow(s) then
count:= count+1; R:= R, i;
fi
od:
R;
MATHEMATICA
Select[Range[8000], GCD @@ FactorInteger[Plus @@ Times @@@ FactorInteger[#!]][[;; , 2]] > 1 &] (* Amiram Eldar, Aug 26 2022 *)
PROG
(Python)
from itertools import count, islice, accumulate
from math import prod
from sympy import perfect_power, factorint
def A356646_gen(): # generator of terms
return (a+2 for a, b in enumerate(accumulate(sum(prod(d) for d in factorint(n).items()) for n in count(2))) if perfect_power(b))
A356646_list = list(islice(A356646_gen(), 10)) # Chai Wah Wu, Aug 28 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 19 2022
EXTENSIONS
a(28)-a(33) from Chai Wah Wu, Aug 28 2022
STATUS
approved