login
A356646
Numbers k such that the integer log of k! is a perfect power.
2
4, 8, 27, 31, 575, 669, 1201, 2505, 4784, 7618, 35710, 65005, 166422, 870062, 994086, 1105670, 1209538, 2140133, 3020610, 9147713, 9404277, 14492743, 16792162, 18566766, 19445469, 21264479, 46483343, 109424090, 292374429, 293351547, 362681674, 399576585, 450622855
OFFSET
1,1
COMMENTS
Numbers k such that A025281(k) is a perfect power.
Numbers k such that A356631(k) = 1.
LINKS
EXAMPLE
a(2) = 8 because the integer log of 8! = 2^7 * 3^2 * 5 * 7 is 2*7 + 3*2 + 5 + 7 = 32 = 2^5 is a perfect power.
MAPLE
spf:= proc(n) local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc:ispow:= proc(n) igcd(map(t -> t[2], ifactors(n)[2]))>1 end proc:s:= 0: R:= NULL: count:= 0:
for i from 1 while count < 27 do
s:= s+spf(i);
if ispow(s) then
count:= count+1; R:= R, i;
fi
od:
R;
MATHEMATICA
Select[Range[8000], GCD @@ FactorInteger[Plus @@ Times @@@ FactorInteger[#!]][[;; , 2]] > 1 &] (* Amiram Eldar, Aug 26 2022 *)
PROG
(Python)
from itertools import count, islice, accumulate
from math import prod
from sympy import perfect_power, factorint
def A356646_gen(): # generator of terms
return (a+2 for a, b in enumerate(accumulate(sum(prod(d) for d in factorint(n).items()) for n in count(2))) if perfect_power(b))
A356646_list = list(islice(A356646_gen(), 10)) # Chai Wah Wu, Aug 28 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 19 2022
EXTENSIONS
a(28)-a(33) from Chai Wah Wu, Aug 28 2022
STATUS
approved