login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356644
Number of vertex cuts in the n-antiprism graph.
0
0, 0, 3, 48, 360, 2057, 10276, 47552, 209871, 898168, 3765080, 15560725, 63681228, 258826128, 1046920155, 4220390592, 16973219016, 68148598817, 273305152756, 1095189435488, 4386195036135, 17559755662600, 70280167711928, 281233465458733, 1125242449638300, 4501812479503152
OFFSET
1,3
COMMENTS
Sequence extended to n = 1 using formula.
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Vertex Cut
FORMULA
a(n) = 2^(2*n) - A286183(n)-1. - Pontus von Brömssen, Aug 21 2022
a(n) = 4^n + 2*n - LucasL(2*n) - 2*n*Fibonacci(2 n) - 1. - Eric W. Weisstein, Aug 30 2022
a(n) = 12*a(n-1) - 56*a(n-2) + 130*a(n-3) -160*a(n-4) + 104*a(n-5) - 33*a(n-6) + 4*a(n-7). - Eric W. Weisstein, Aug 30 2022
G.f.: x^3*(-3-12*x+48*x^2-35*x^3+8*x^4)/((-1+4*x)*(-1+4*x-4*x^2+x^3)^2). - Eric W. Weisstein, Aug 30 2022
MATHEMATICA
Table[4^n + 2 n - LucasL[2 n] - 2 n Fibonacci[2 n] - 1, {n, 20}]
LinearRecurrence[{12, -56, 130, -160, 104, -33, 4}, {0, 0, 3, 48, 360, 2057, 10276}, 20]
CoefficientList[Series[x^2 (-3 - 12 x + 48 x^2 - 35 x^3 + 8 x^4)/((-1 + x)^2 (-1 + 4 x) (1 - 3 x + x^2)^2), {x, 0, 20}], x]
CROSSREFS
Cf. A286183.
Sequence in context: A219056 A230962 A073982 * A354132 A335178 A260347
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 19 2022
EXTENSIONS
a(13)-a(26) (based on A286183) from Pontus von Brömssen, Aug 21 2022
STATUS
approved