login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the integer log of k! is a perfect power.
2

%I #20 Aug 30 2022 22:08:32

%S 4,8,27,31,575,669,1201,2505,4784,7618,35710,65005,166422,870062,

%T 994086,1105670,1209538,2140133,3020610,9147713,9404277,14492743,

%U 16792162,18566766,19445469,21264479,46483343,109424090,292374429,293351547,362681674,399576585,450622855

%N Numbers k such that the integer log of k! is a perfect power.

%C Numbers k such that A025281(k) is a perfect power.

%C Numbers k such that A356631(k) = 1.

%H Chai Wah Wu, <a href="/A356646/b356646.txt">Table of n, a(n) for n = 1..38</a>

%e a(2) = 8 because the integer log of 8! = 2^7 * 3^2 * 5 * 7 is 2*7 + 3*2 + 5 + 7 = 32 = 2^5 is a perfect power.

%p spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:ispow:= proc(n) igcd(map(t -> t[2], ifactors(n)[2]))>1 end proc:s:= 0: R:= NULL: count:= 0:

%p for i from 1 while count < 27 do

%p s:= s+spf(i);

%p if ispow(s) then

%p count:= count+1; R:= R,i;

%p fi

%p od:

%p R;

%t Select[Range[8000], GCD @@ FactorInteger[Plus @@ Times @@@ FactorInteger[#!]][[;; , 2]] > 1 &] (* _Amiram Eldar_, Aug 26 2022 *)

%o (Python)

%o from itertools import count, islice, accumulate

%o from math import prod

%o from sympy import perfect_power, factorint

%o def A356646_gen(): # generator of terms

%o return (a+2 for a, b in enumerate(accumulate(sum(prod(d) for d in factorint(n).items()) for n in count(2))) if perfect_power(b))

%o A356646_list = list(islice(A356646_gen(),10)) # _Chai Wah Wu_, Aug 28 2022

%Y Cf. A001414, A001597, A025281, A356631.

%K nonn

%O 1,1

%A _J. M. Bergot_ and _Robert Israel_, Aug 19 2022

%E a(28)-a(33) from _Chai Wah Wu_, Aug 28 2022