login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356269
a(n) = Sum_{k=0..n} binomial(2*k, k) * p(k), where p(k) is the partition function A000041.
3
1, 3, 15, 75, 425, 2189, 12353, 63833, 346973, 1805573, 9565325, 49069517, 257289529, 1307750129, 6723491129, 34024174649, 172873744739, 865954792079, 4359881882579, 21679061144579, 108108834714719, 534409071271199, 2642716232918639, 12975671796056639, 63765647596939139
OFFSET
0,2
FORMULA
a(n) ~ binomial(2*n,n) * p(n) * 4/3.
a(n) ~ 2^(2*n) * exp(Pi*sqrt(2*n/3)) / (3^(3/2) * sqrt(Pi) * n^(3/2)).
MATHEMATICA
Table[Sum[Binomial[2*k, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 01 2022
STATUS
approved