login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(2*k, k) * p(k), where p(k) is the partition function A000041.
3

%I #7 Aug 01 2022 14:24:25

%S 1,3,15,75,425,2189,12353,63833,346973,1805573,9565325,49069517,

%T 257289529,1307750129,6723491129,34024174649,172873744739,

%U 865954792079,4359881882579,21679061144579,108108834714719,534409071271199,2642716232918639,12975671796056639,63765647596939139

%N a(n) = Sum_{k=0..n} binomial(2*k, k) * p(k), where p(k) is the partition function A000041.

%F a(n) ~ binomial(2*n,n) * p(n) * 4/3.

%F a(n) ~ 2^(2*n) * exp(Pi*sqrt(2*n/3)) / (3^(3/2) * sqrt(Pi) * n^(3/2)).

%t Table[Sum[Binomial[2*k, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]

%Y Cf. A000041, A006134, A032443, A218481, A286955, A356267, A356270.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Aug 01 2022