login
A355273
Primes p for which p + q is a multiple of 4, where q is the previous prime if p == 2 (mod 3) or the next prime otherwise.
0
3, 5, 29, 31, 53, 59, 61, 73, 89, 137, 139, 149, 151, 157, 173, 179, 181, 191, 239, 241, 251, 257, 263, 269, 271, 283, 293, 331, 337, 347, 359, 367, 373, 389, 409, 419, 421, 431, 433, 449, 509, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 631
OFFSET
1,1
COMMENTS
Naively one might expect p + precprime / nextprime congruent to 0 or to 2 (mod 4) with equal probability. It turns out that, following the given rule, the case 2 is much more frequent than the case 0, especially for small primes. (Observation by Y. Kohmoto.)
See the comment from 2017 in A068228 for an explanation.
PROG
(PARI) select( is(p)=if(p%3==2, precprime(p-1)+p, nextprime(p+1)+p)%4==0, primes(149))
(Python)
from sympy import nextprime
from itertools import islice
def agen():
p, q = 2, [3, 1]
while True:
if (p + q[int(p%3 == 2)])%4 == 0: yield p
p, q = q[0], [nextprime(q[0]), p]
print(list(islice(agen(), 54))) # Michael S. Branicky, Jun 26 2022
CROSSREFS
Cf. A151799 (previous prime), A151800 (next prime).
Cf. A068228.
Sequence in context: A300676 A016552 A321069 * A361085 A141578 A327748
KEYWORD
nonn
AUTHOR
STATUS
approved