login
A354378
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k)!.
1
1, 2, 24, 720, 8064, 3628800, 479001600, 87178291200, 20922789888000, 1280474741145600, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 60977668922342772100300800000, 1569543549184562477137920000000
OFFSET
0,2
FORMULA
Denominators of coefficients in expansion of cos(sqrt(x)) / (1 - x).
EXAMPLE
1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
MATHEMATICA
Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
PROG
(PARI) a(n) = denominator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, May 24 2022
STATUS
approved