login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354346
a(n) = 2*n - A064989(sigma(sigma(A003961(n)))), where A003961 shifts the prime factorization one step towards larger primes, and A064989 shifts it back towards smaller primes.
2
1, -1, 4, 3, 4, 6, 9, 4, 17, 0, 20, 14, 4, -1, 1, -53, 24, 31, 32, 10, -24, 38, 42, -10, 47, -14, 29, 31, 38, -53, 56, 39, 61, 10, 50, 67, 72, 56, 63, -146, 72, -136, 57, 78, 84, 80, 88, -74, 95, 85, 90, -6, 96, -37, 81, 72, -205, 38, 116, -25, 102, 106, 121, -413, -189, 103, 68, 86, 28, 62, 108, 132, 88, 142, 84
OFFSET
1,3
COMMENTS
No other zeros <= 2^25 than a(10) and a(105270).
FORMULA
a(n) = 2*n - A354195(n) = 2*n - A064989(sigma(sigma(A003961(n)))).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A354195(n) = A064989(sigma(sigma(A003961(n))));
A354346(n) = (n+n - A354195(n));
CROSSREFS
Cf. also A033879.
Sequence in context: A193694 A354471 A117893 * A021701 A097511 A200592
KEYWORD
sign
AUTHOR
Antti Karttunen, May 25 2022
STATUS
approved