login
A354092
Fully multiplicative prime shift where the primes of the form 3k+2 are replaced by the previous such prime (with 2 -> 1), and primes of the form 3k and 3k+1 stay as they are.
4
1, 1, 3, 1, 2, 3, 7, 1, 9, 2, 5, 3, 13, 7, 6, 1, 11, 9, 19, 2, 21, 5, 17, 3, 4, 13, 27, 7, 23, 6, 31, 1, 15, 11, 14, 9, 37, 19, 39, 2, 29, 21, 43, 5, 18, 17, 41, 3, 49, 4, 33, 13, 47, 27, 10, 7, 57, 23, 53, 6, 61, 31, 63, 1, 26, 15, 67, 11, 51, 14, 59, 9, 73, 37, 12, 19, 35, 39, 79, 2, 81, 29, 71, 21, 22, 43, 69, 5, 83
OFFSET
1,3
FORMULA
Fully multiplicative with a(2) = 1, a(A003627(1+n)) = A003627(n), a(A007645(n)) = A007645(n).
For all n >= 1, a(A354091(n)) = n.
PROG
(PARI) A354092(n) = { my(f=factor(n)); for(k=1, #f~, if(2==(f[k, 1]%3), if(2==f[k, 1], f[k, 1]--, forstep(i=primepi(f[k, 1])-1, 0, -1, if(2==(prime(i)%3), f[k, 1]=prime(i); break))))); factorback(f); };
CROSSREFS
Left inverse of A354091.
Cf. A064989, A348747 (variants).
Sequence in context: A345037 A175945 A209859 * A262218 A362940 A331695
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 17 2022
STATUS
approved