login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345037
a(n) = Sum_{k=1..n} (-k)^(floor(n/k) - 1).
3
1, 0, 3, -1, 2, 3, 6, -12, 3, 20, 23, -49, -46, 41, 182, -100, -97, -6, -3, -613, 418, 1941, 1944, -5518, -4765, 1364, 10205, 2629, 2632, -1181, -1178, -71404, 7463, 105748, 127245, -233385, -233382, 159813, 868586, -335790, -335787, -853276, -853273, -2689757, 4163818
OFFSET
1,3
LINKS
FORMULA
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k * (1 - x^k)/(1 + k*x^k).
|a(n)| ~ 3^((n - mod(n,3))/3 - 1). - Vaclav Kotesovec, Jun 12 2021
MATHEMATICA
a[n_] := Sum[(-k)^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 45] (* Amiram Eldar, Jun 06 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (-k)^(n\k-1));
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1+k*x^k))/(1-x))
CROSSREFS
Sequence in context: A078719 A087227 A060477 * A175945 A209859 A354092
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 06 2021
STATUS
approved