login
A354090
a(n) = A007947(n)^(A051904(n) - 1), where A007947 is squarefree kernel and A051904 is minimum prime exponent.
2
1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 9, 1, 1, 1, 1, 16, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
a(n) = A007947(n)^(A051904(n)-1).
a(n) = n / A304776(n).
MATHEMATICA
a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]] - 1; f[[;; , 2]] = e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A051904(n) = if((1==n), 0, vecmin(factor(n)[, 2]));
A354090(n) = (A007947(n)^(A051904(n)-1));
(PARI) a(n) = {if(n==1, 1, my(f = factor(n), e = vecmin(f[, 2]) - 1); prod(i = 1, #f~, f[i, 1]^e)); } \\ Amiram Eldar, Feb 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 19 2022
STATUS
approved