login
A354051
Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).
3
1, 5, 7, 8, 4, 7, 7, 5, 7, 9, 6, 6, 7, 1, 3, 6, 8, 3, 8, 3, 1, 8, 0, 2, 2, 1, 9, 3, 2, 4, 5, 7, 1, 9, 2, 3, 5, 0, 4, 6, 6, 7, 2, 2, 1, 7, 3, 2, 7, 2, 9, 1, 3, 2, 7, 5, 8, 7, 4, 8, 6, 6, 4, 5, 7, 9, 3, 8, 0, 8, 4, 4, 8, 0, 6, 1, 6, 8, 1, 1, 1, 7, 4, 5, 7, 3, 1, 9, 4, 3, 5, 4, 1, 6, 6, 6, 2, 8, 6, 3, 8, 3, 1, 6, 6
OFFSET
1,2
COMMENTS
Apart from leading digits the same as A256920. - R. J. Mathar, May 20 2022
FORMULA
Equals 1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))).
EXAMPLE
1.578477579667136838318022193245719235046672217327291327587486645793808...
MAPLE
evalf(1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))), 105);
MATHEMATICA
RealDigits[Chop[N[Sum[1/(k^4 + 1), {k, 0, Infinity}], 105]]][[1]]
PROG
(PARI) sumpos(k=0, 1/(k^4 + 1))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 16 2022, following a suggestion from Bernard Schott
STATUS
approved