login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354053
Decimal expansion of Sum_{k>=0} 1 / (k^8 + 1).
2
1, 5, 0, 4, 0, 6, 2, 1, 3, 3, 3, 1, 4, 7, 9, 9, 5, 1, 1, 2, 9, 2, 9, 0, 5, 4, 1, 7, 4, 5, 1, 1, 2, 7, 0, 7, 5, 2, 4, 5, 4, 1, 4, 3, 6, 3, 8, 2, 0, 3, 5, 1, 9, 7, 5, 4, 5, 8, 6, 3, 5, 3, 5, 7, 8, 1, 8, 8, 1, 2, 6, 9, 5, 1, 6, 4, 5, 6, 6, 3, 3, 4, 0, 7, 2, 0, 0, 6, 6, 1, 3, 9, 8, 5, 1, 6, 8, 4, 2, 8, 1, 8, 2, 4, 3
OFFSET
1,2
FORMULA
Equals 1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8.
Equal 3/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(8*k)-1). - Amiram Eldar, May 20 2022
EXAMPLE
1.504062133314799511292905417451127075245414363820351975458635357818812...
MAPLE
evalf(1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8, 100);
MATHEMATICA
RealDigits[Chop[N[Sum[1/(k^8 + 1), {k, 0, Infinity}], 105]]][[1]]
PROG
(PARI) sumpos(k=0, 1/(k^8 + 1))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 16 2022
STATUS
approved