The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A354053 Decimal expansion of Sum_{k>=0} 1 / (k^8 + 1). 2
 1, 5, 0, 4, 0, 6, 2, 1, 3, 3, 3, 1, 4, 7, 9, 9, 5, 1, 1, 2, 9, 2, 9, 0, 5, 4, 1, 7, 4, 5, 1, 1, 2, 7, 0, 7, 5, 2, 4, 5, 4, 1, 4, 3, 6, 3, 8, 2, 0, 3, 5, 1, 9, 7, 5, 4, 5, 8, 6, 3, 5, 3, 5, 7, 8, 1, 8, 8, 1, 2, 6, 9, 5, 1, 6, 4, 5, 6, 6, 3, 3, 4, 0, 7, 2, 0, 0, 6, 6, 1, 3, 9, 8, 5, 1, 6, 8, 4, 2, 8, 1, 8, 2, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA Equals 1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8. Equal 3/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(8*k)-1). - Amiram Eldar, May 20 2022 EXAMPLE 1.504062133314799511292905417451127075245414363820351975458635357818812... MAPLE evalf(1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8, 100); MATHEMATICA RealDigits[Chop[N[Sum[1/(k^8 + 1), {k, 0, Infinity}], 105]]][[1]] PROG (PARI) sumpos(k=0, 1/(k^8 + 1)) CROSSREFS Cf. A060890, A113319, A354051, A354052. Sequence in context: A175296 A076266 A350281 * A200102 A016581 A175472 Adjacent sequences: A354050 A354051 A354052 * A354054 A354055 A354056 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, May 16 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 01:28 EST 2023. Contains 360091 sequences. (Running on oeis4.)