login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).
3

%I #13 May 20 2022 05:59:49

%S 1,5,7,8,4,7,7,5,7,9,6,6,7,1,3,6,8,3,8,3,1,8,0,2,2,1,9,3,2,4,5,7,1,9,

%T 2,3,5,0,4,6,6,7,2,2,1,7,3,2,7,2,9,1,3,2,7,5,8,7,4,8,6,6,4,5,7,9,3,8,

%U 0,8,4,4,8,0,6,1,6,8,1,1,1,7,4,5,7,3,1,9,4,3,5,4,1,6,6,6,2,8,6,3,8,3,1,6,6

%N Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).

%C Apart from leading digits the same as A256920. - _R. J. Mathar_, May 20 2022

%F Equals 1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))).

%e 1.578477579667136838318022193245719235046672217327291327587486645793808...

%p evalf(1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))), 105);

%t RealDigits[Chop[N[Sum[1/(k^4 + 1), {k, 0, Infinity}], 105]]][[1]]

%o (PARI) sumpos(k=0, 1/(k^4 + 1))

%Y Cf. A256920, A113319, A354052, A354053.

%Y Cf. A002523, A255434, A354004.

%K nonn,cons

%O 1,2

%A _Vaclav Kotesovec_, May 16 2022, following a suggestion from _Bernard Schott_