login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353805
a(n) = A051027(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 31, 10, 31, 1, 1, 1, 5, 13, 1, 3, 1, 1, 1, 13, 1, 1, 1, 1, 5, 57, 1, 1, 65, 1, 31, 13, 1, 5, 1, 1, 1, 1, 7, 403, 1, 1, 3, 403, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 13, 1, 3, 70, 1, 5, 13, 1, 13, 31, 1, 85, 13, 5, 1, 1, 13
OFFSET
1,10
COMMENTS
Denominator of fraction A353802(n) / A051027(n).
FORMULA
a(n) = A051027(n) / A353804(n).
PROG
(PARI)
A051027(n) = sigma(sigma(n));
A353805(n) = { my(f = factor(n)); (A051027(n) / gcd(A051027(n), prod(k=1, #f~, A051027(f[k, 1]^f[k, 2])))); };
CROSSREFS
Cf. A000203, A051027, A353802, A353803, A353804, A353806 (numerators).
Positions of 1's is given by the union of A336547 and A353807.
Cf. also A353755, A353756.
Sequence in context: A367303 A357912 A251072 * A332018 A010227 A010228
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, May 08 2022
STATUS
approved