login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A051027(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).
7

%I #9 May 09 2022 11:02:47

%S 1,1,1,1,1,1,1,1,1,13,1,1,1,1,5,1,1,1,1,1,3,13,1,1,1,1,1,1,1,65,1,1,

%T 31,10,31,1,1,1,5,13,1,3,1,1,1,13,1,1,1,1,5,57,1,1,65,1,31,13,1,5,1,1,

%U 1,1,7,403,1,1,3,403,1,1,1,1,1,1,3,5,1,1,1,13,1,3,70,1,5,13,1,13,31,1,85,13,5,1,1,13

%N a(n) = A051027(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).

%C Denominator of fraction A353802(n) / A051027(n).

%H Antti Karttunen, <a href="/A353805/b353805.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A051027(n) / A353804(n).

%o (PARI)

%o A051027(n) = sigma(sigma(n));

%o A353805(n) = { my(f = factor(n)); (A051027(n) / gcd(A051027(n), prod(k=1, #f~, A051027(f[k, 1]^f[k, 2])))); };

%Y Cf. A000203, A051027, A353802, A353803, A353804, A353806 (numerators).

%Y Positions of 1's is given by the union of A336547 and A353807.

%Y Cf. also A353755, A353756.

%K nonn,frac

%O 1,10

%A _Antti Karttunen_, May 08 2022